viernes, 25 de febrero de 2011

Funcióne Reales

Una función puede considerarse como un caso particular de una relación o de correspondencia matemática. Cada relación o correspondencia de un elemento x\in X con un (y sólo un) y\in Y se denota f(x)=y\,, en lugar de (x,y)\in f.

Formalmente, pedimos que se cumplan las siguientes dos condiciones:

  1. Condición de existencia: Todos los elementos de X están relacionados con elementos de Y, es decir, \forall x\in X,\ \exists y\in Y\ \backslash \ (x,y)\in f.
  2. Condición de unicidad: Cada elemento de X está relacionado con un único elemento de Y, es decir, si (x,y_1)\in f \and (x,y_2)\in f \Rightarrow y_1 = y_2.

Ejemplos

  • La función definida por f(x)=x+1\,, tiene como dominio, codominio e imagen a todos los números reales (\mathbb{R}).
Función con Dominio X y Rango Y
  • Para la función g \colon {\mathbb{R}} \to {\mathbb{R}} tal que g(x)=x^2\,, en cambio, si bien su dominio y codominio son iguales a \mathbb{R}, sólo tendrá como imagen los valores comprendidos entre 0 y +.
  • En la figura se puede apreciar una función f \colon X \to Y \,, con
{\rm D}_f = X = \{1, 2, 3,4\} \,
{\rm C}_f \ = \; Y = \{a, b, c, d \} \,
Note que a cada elemento de X le corresponde un único elemento de Y. Además, el elemento a de Y no tiene origen, y el elemento b tiene dos (el 1 y el 4). Finalmente,
{\rm Im}_f = \{b, c, d\}\subseteq Y.
Esta función representada como relación, queda: X\times Y = \{(1,b), (2,c), (3,d), (4,b) \}

No hay comentarios:

Publicar un comentario